RESEARCH

Using GIS and Machine Learning to Classify Residential Status of Urban Buildings in Low and Middle Income Settings

Utilising satellite images for planning and development is becoming a common practice as computational power and machine learning capabilities expand. In this paper, we explore the use of satellite image derived building footprint data to classify the residential status of urban buildings in low and middle income countries. A recently developed ensemble machine learning building classification model is applied for the first time to the Democratic Republic of the Congo, and to Nigeria. The model is informed by building footprint and label data of greater completeness and attribute consistency than have previously been available for these countries. A GIS workflow is described that semiautomates the preparation of data for input to the model. The workflow is designed to be particularly useful to those who apply the model to additional countries and use input data from diverse sources. Results show that the ensemble model correctly classifies between 85% and 93% of structures as residential and nonresidential across both countries. The classification outputs are likely to be valuable in the modelling of human population distributions, as well as in a range of related applications such as urban planning, resource allocation, and service delivery.

Authors Christopher T. Lloyd, Hugh J. W. Sturrock, Douglas R. Leasure, Warren C. Jochem, Attila N. Lázár, and Andrew J. Tatem
Source Remote Sensing
Published November 2020
Full publication

More publications

The Population Seen from Space: When Satellite Images Come to the Rescue of the Census

Great steps have been made in recent decades in observing the Earth from the sky. Landscapes and infrastructure can now be mapped at an extremely fine spatial scale. These data—particularly useful to geographers—can also benefit demographers. By combining observations of […]

Rethinking Education for Sustainable Development [Chapter 9]

This book explores how education can be used as a tool to promote sustainability practices as the world faces huge challenges related to climate change and public health. GRID3 contributed to Chapter 9, “Building Capacity for Geospatial Data-Driven Education Planning”.

High-resolution estimates of social distancing feasibility, mapped for urban areas in sub-Saharan Africa

Social distancing has been widely-implemented as a public health measure during the COVID-19 pandemic. Despite widespread application of social distancing guidance, the feasibility of people adhering to such guidance varies in different settings, influenced by population density, the built environment […]