Publication

Semi-automatic mapping of pre-census enumeration areas and population sampling frames

Enumeration Areas (EAs) are the operational geographic units for the collection and dissemination of census data and are often used as a national sampling frame for various types of surveys. In many poor or conflict-affected countries, EA demarcations are incomplete, outdated, or missing. Even for countries that are stable and prosperous, creating and updating EAs is one of the most challenging yet essential tasks in the preparation for a national census. Commonly, EAs are created by manually digitising small geographic units on high-resolution satellite imagery or physically walking the boundaries of units, both of which are highly time, cost, and labour intensive.

Authors Sarchil Qader, Veronique Lefebvre, Andrew Tatem, Utz Pape, Kristen Himelein, Amy Ninneman, Linus Bengtsson & Tomas Bird
Source Nature
Published 2021
Full publication

More publications

COVID-19: Supporting the Government of Namibia with mobility data

Anonymised and aggregated data from Mobile Network Operators is a key data source for understanding the mobility patterns of populations, and improving decision-making and scenario planning during the COVID-19 epidemic. This data can be analysed in near real-time and provide an overview of mobility patterns across all of Namibia

GRID3 Mapping for Health – Brochure

Supported by Gavi through its INFUSE initiative, GRID3 Mapping for Health in the Democratic Republic of the Congo (DRC) is a Ministry of Health initiative, delivered in partnership with Flowminder and the Center for International Earth Science Information Network at […]

Tools for mapping multi-scale settlement patterns of building footprints: An introduction to the R package foot

Spatial datasets of building footprint polygons are becoming more widely available and accessible for many areas in the world. These datasets are important inputs for a range of different analyses, such as understanding the development of cities, identifying areas at risk of disasters, and mapping the distribution of populations. The growth of high spatial resolution imagery and computing power is enabling automated procedures to extract and map building footprints for whole countries.