WHITE PAPER

Cartographier et Classer les localités

Analyse du travail de GRID3 pour collecter et analyser les données des localités. Ce travail se concentre sur deux pôles primaires: créer une couche des localités améliorée et exhaustive qui permet d’avoir une vue d’ensemble des communautés; utiliser les empreintes des bâtiments, les données géospatiales et algorithmes avec apprentissage automatique, pour classer les structures et zones locales au sein des localités. 

Cette étude explore les applications des méthodes de GRID3 au Nigéria, en République Démocratique du Congo et en Zambie.

Authors Center for International Earth Science Information Network; Flowminder Foundation; United Nations Population Fund; WorldPop, University of Southampton
Full publication

More publications

The Population Seen from Space: When Satellite Images Come to the Rescue of the Census

Great steps have been made in recent decades in observing the Earth from the sky. Landscapes and infrastructure can now be mapped at an extremely fine spatial scale. These data—particularly useful to geographers—can also benefit demographers. By combining observations of […]

Rethinking Education for Sustainable Development [Chapter 9]

This book explores how education can be used as a tool to promote sustainability practices as the world faces huge challenges related to climate change and public health. GRID3 contributed to Chapter 9, “Building Capacity for Geospatial Data-Driven Education Planning”.

High-resolution estimates of social distancing feasibility, mapped for urban areas in sub-Saharan Africa

Social distancing has been widely-implemented as a public health measure during the COVID-19 pandemic. Despite widespread application of social distancing guidance, the feasibility of people adhering to such guidance varies in different settings, influenced by population density, the built environment […]